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Short synthesis of a novel class of salvinorin A analogs with
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Abstract

Novel semisynthetic analogs of salvinorin A, a full agonist having extraordinary affinity as well as selectivity for the j-opioid
receptor (KOR), were obtained in good yields. The derivatives are remarkable for their unusual and unique hemiacetal structure in
the salvinorin series of compounds. The formation of the hemiacetal occurs with epimerization at C-12, thus preserving the original
configuration of salvinorin A. The dimethyl ester derivative of the hemiacetal was found to have an affinity for both KOR and
MOR (l-opioid receptor).
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Salvinorin A; KOR ligands; Hemiacetal; Dual affinity
O
CO2H

CO2H

HO
H

OH

O

O

O

CO2Me

AcO
H H

O

O
5% aq. KOH

       Δ, 2 h
12 8

12

1

12

2
8

Salvinorin A, a secondary metabolite isolated from the
leaves of Salvia divinorum, is a neoclerodane diterpenoid
with a strong hallucinogenic activity. It has been shown
to have high affinity and selectivity for KOR.1 Salvinorin
A represents an attractive lead compound for drug devel-
opment due to its strong effects on human mood and low
toxicity. In the last two years numerous derivatives and
analogs of salvinorin A were synthesized showing a broad
range of KOR affinities.2 Synthesis of new analogs of salv-
inorin A is important for generating structure-receptor
affinity data and for designing agents with therapeutic
potential. Some of the chemical modifications of salvinorin
A have produced analogs with changed pharmacological
profiles from full j-agonist to partial d- or l-agonists or
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antagonists.2i,m,3 Recently, modifications of the furan ring
yielded the first analogs with j-antagonistic activity.2b

In this Letter we report the synthesis of the hemiacetal
(2) and its derivatives starting from salvinorin A. Refluxing
(1) (2)

Scheme 1. Conversion of salvinorin A (1) to hemiacetal (2) under the
basic conditions.
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Scheme 2. Putative mechanisms for hemiacetal (2) formation.
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1 with 5% aqueous KOH surprisingly gave only one
product according to thin-layer chromatography4

(Scheme 1).
1H and 13C NMR analysis of the isolated product

showed the typical spectra of salvinorins with an opened
lactone moiety, except for the lack of the ketone carbon
resonance at d 200. Instead, a new resonance appeared at
d 97 suggesting the presence of carbon connected to two
oxygen atoms (see Fig. 1 for appropriate HMBC and
NOESY correlations). Interestingly, under the harsh basic
conditions, we did not observe epimerization at C-8, com-
monly occurring in salvinorins.2d,5

The proposed mechanism of hemiacetal formation with
(R)-configuration at C-12 includes the formation of acyclic
alcohol (3), rotation along the C-11–C-12 bond, leading to
conformer (4), cyclization to the hemiacetal with (S)-con-
figuration at C-12 (5) and epimerization at C-12 via inter-
mediate 6 to the thermodynamically more stable product
(2). Although the reaction is performed in an alkaline med-
ium, intermediate 6 is still anticipated to be stabilized by
solvation.

An alternative mechanism assumes a 1,5-hydride shift in
hydroxyacid intermediate 4, followed by a retro 1,5-hydrid
shift in 7 to form an epimeric hydroxyacid (8) as a precur-
sor to hemiacetal 2 (Scheme 2).

The absolute configuration has been unambiguously
determined by X-ray crystallographic analysis6 of the cor-
responding dimethyl ester (9)7 (Fig. 2).

Considering the importance of the acetoxy group at C-2
for high affinity of salvinorin A to j-opioid receptor, we
synthesized acetate (10) using acetic anhydride and a cata-
lytic amount of DMAP8 (Scheme 3).

Hemiacetals 2 and 9 are relatively stable under basic and
neutral conditions. In the presence of acid diester (9) is
readily transformed to the corresponding hydroxyketone
(11).

Compounds 2 and 9–11 were evaluated for KOR and
MOR affinities at the NIMH-sponsored Psychoactive Drug
Screening Program, University of North Carolina at
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Fig. 1. Key HMBC and NOESY correlations of 2.
Chapel Hill using radioligand binding assays. The assays
were conducted according to the procedure described ear-
lier.1 The results are presented in Table 1.

Transformation of salvinorin A (1) to hemiacetal (2)
results in a loss of all KOR activity. Compound 9 displays
moderate affinity for both j- and l-opioid receptors. Sur-
prisingly, the product of acetylation (10), despite functional
similarity to salvinorin A, is practically devoid of affinity.
Conversion of hemiacetal (9) into acyclic hydroxyketone
(11) resulted in the loss of MOR affinity, while retaining
a weak KOR activity.9

In summary, we have developed a short synthetic
approach to new salvinorin A analogs with cyclic hemiac-
etal structure and dual but rather weak affinity to KOR
and MOR. This method offers an attractive strategy to a
new and unique class of salvinorin A analogs.
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Scheme 3. Derivatives of hemiacetal 2.

Table 1
Affinity KOR and MOR receptors (for KOR-[3H]U69593 and MOR-[3H]
DAMGO)

Compound Ki (nM) (KOR) Ki (nM) (MOR)

Salvinorin A (1) 0.48 ± 0.18 —
Hemiacetal (2) NA NA
Diester (9) 219 ± 59 1926 ± 147
Acetate (10) 6003 ± 1242 7487 ± 2141
Hydroxyketone (11) 1991 ± 708 >10,000
DAMGO — 2.40 ± 0.48

Fig. 2. X-ray crystallographic structure of dimethyl ester (9) [dimethyl (2R,3aR,4R,6aR,7R,9S,9aS,9bS)-2-(3-furyl)-9,9a-dihydroxy-3a,6a-di-
methyldodecahydrobenzo[de]chromene-4,7-dicarboxylate].
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